parallèle, géométrie
Article principal
-
- Écrit par Alain MATTHÈS
En géométrie euclidienne, le parallélisme est une propriété relative aux droites. Ainsi, 2 droites dans un plan sont dites parallèles si elles n’ont aucun point commun ou si elles sont confondues. Dans le cas contraire, les droites n’ont qu’un et un seul point commun. Elles sont alors dites sécantes. La géométrie euclidienne a débuté avec les Éléments, ensemble de 13 livres probablement écrits par le mathématicien grec Euclide [...]
Articles associés
-
ANGLE ,géométrie - Écrit par Olivier GENIN
Un angle est une portion de plan délimité par deux droites sécantes en un point. Ce point d’intersection est appelé sommet de l’angle. La notation d’un angle, où le point O est le sommet de l’angle et les demi-droites [OA) et [OB) les côtés de l’angle, est AOB. Angles opposés Deux angles sont opposés par le sommet s’ils ont le même sommet et si leurs côtés sont dans le prolongement l’un de l’autre [...]
-
DROITE ÉQUATION DE- Écrit par Olivier GENIN
Une droite est un ensemble illimité de points. Pour la représenter géométriquement, il faut définir un repère, connaître les coordonnées d’au moins 2 de ses points ou son équation. Le repère Dans le plan, un repère a 2 axes, qu'on appelle axe des abscisses pour l’axe horizontal et axe des ordonnées pour l’axe vertical. Le point d'intersection est l'origine du repère et se note généralement O [...]
-
MILIEUX THÉORÈME DE- Écrit par Olivier GENIN
Le théorème des milieux dit que, dans un triangle, la droite qui passe par les milieux de deux côtés est parallèle au troisième côté. Soit ABC un triangle, soit I le milieu du segment [AB]. Si J est le milieu du segment [AC], alors la droite (IJ) est parallèle à la droite (BC) : La réciproque est vraie : dans un triangle, la droite parallèle à un côté qui passe par le milieu [...]
-
PERPENDICULAIRE - Écrit par Alain MATTHÈS
En géométrie plane, 2 droites non parallèles sont toujours sécantes (elles se coupent en un point). Elles sont dites perpendiculaires (du latin perpendiculum, « fil à plomb ») lorsqu’elles se coupent en formant un angle droit. Cette définition est aussi valable dans l’espace. On code cette caractéristique par un petit carré à l’intersection des 2 droites [...]
-
THALÈS THÉORÈME DE- Écrit par Olivier GENIN
Le théorème de Thalès dit que si (d) et (d’) sont deux droites sécantes en un point A, B et M deux points de la droite (d), distincts de A, C et N deux points de la droite (d’), distincts de A, et si les droites (BC) et (MN) sont parallèles, alors : La figure ABC forme un triangle. D’où l’énoncé restreint du théorème de Thalès, appliqué au triangle [...]
-
VECTEUR ,mathématiques - Écrit par Olivier GENIN
Un vecteur est défini par son origine (ou point de départ), son extrémité (ou point d'arrivée), sa longueur, encore appelée norme du vecteur, sa direction, qui est celle de la droite qui le porte, et son sens, de son origine à son extrémité. Ainsi, le vecteur AB est défini par son origine (le point A), son extrémité (le point B), sa longueur AB, appelée norme et notée [...]