mathématiques
Les mathématiques étudient les nombres ainsi que leurs relations entre eux et avec le monde réel. Elles sont souvent décrites comme une sorte de langage. On les utilise tous les jours, pour lire l’heure, jouer ou construire des objets.
Types de mathématiques
Les mathématiques comprennent plusieurs branches, dont l’arithmétique, l’algèbre, la géométrie, la trigonométrie, le calcul, les statistiques et les probabilités.
Les mathématiques peuvent être pures ou appliquées. Les mathématiques pures étudient les mathématiques pour elles-mêmes. Les mathématiques appliquées permettent de résoudre des problèmes de la vie réelle. Elles servent, par exemple, à construire des gratte-ciel, à prévoir les tremblements de terre ou à expliquer les phénomènes économiques.
Histoire
On utilise les [...]
La suite de cet article est accessible aux abonnés
- Des contenus adaptés au niveau Junior
- Accessible sur tous les écrans
- Pas de publicité
Déjà abonné ? Se connecter
Pour aller plus loin :
Articles liés
addition
L'addition (du latin addere, « ajouter ») est l'une des 4 opérations élémentaires de l'arithmétique. Elle consiste à compter la réunion d'objets contenus dans des collections. Elle sert aussi à déterminer une grandeur... Lire l’article
aire
En géométrie, l'aire (du latin area, qui signifie « surface plane ») désigne la mesure d'une surface. En géographie, le terme « superficie » lui est préféré. Dans la langue de tous les jours, si une « surface » peut ê... Lire l’article
angle, géométrie
Un angle est une portion de plan délimité par deux droites sécantes en un point. Ce point d'intersection est appelé sommet de l'angle. La notation d'un angle, où le point O est le sommet de l'angle et les demi-droites... Lire l’article
arithmétique
L'arithmétique est la branche la plus élémentaire des mathématiques. C'est elle qui permet de compter et de réaliser les 4 opérations élémentaires (addition, soustraction, multiplication, division). Toutes les autres ... Lire l’article
Arithmétiques, livre de Diophante
Diophante d'Alexandrie, un mathématicien grec du 3e siècle, parfois appelé le « père de l'algèbre », est connu par son ouvrage les Arithmétiques, qui traite des solutions des équations algébriques. On ne sait pratique... Lire l’article
calcul littéral
On appelle calcul littéral un calcul qui s'effectue avec au moins un nombre dont la valeur est inconnue.Ce nombre est symbolisé par une lettre, souvent x ou y, d'où l'expression « calcul littéral », qui signifie « cal... Lire l’article
calcul mental
Le calcul mental, c'est résoudre des calculs « de tête », sans poser d'opération ni utiliser une calculatrice.Deux personnes n'auront pas forcément utilisé les mêmes raccourcis ou chemin de calcul pour trouver le bon ... Lire l’article
calculs statistiques
La statistique est la science mathématique qui consiste à récolter et à analyser des données chiffrées, afin de les commenter et de pouvoir observer des tendances.Les instituts de sondage sont des organismes qui utili... Lire l’article
cercle
Un cercle (du latin circus, « cercle », qui a aussi donné « cirque ») est une courbe plane fermée constituée des points situés à égale distance d'un point nommé centre. Il partage le plan en 2 régions, l'intérieur et ... Lire l’article
cercle circonscrit
Un cercle circonscrit à un polygone est un cercle qui, s'il existe, passe par tous les sommets de ce polygone. À l'inverse, un cercle inscrit dans un polygone est un cercle qui, s'il existe, est tangent à chaque côté ... Lire l’article
cercle trigonométrique
Un cercle trigonométrique est un cercle de rayon 1 orienté positivement. Le sens positif est le sens contraire de celui des aiguilles d'une montre. Représentons un quart de cercle trigonométrique pour des angles aigus... Lire l’article
Chasles, relation de
La relation de Chasles porte le nom d'un mathématicien français du 19e siècle : Michel Chasles. En géométrie, elle permet de dire que, pour tout point A, B, C quelconque, l'égalité AB + BC = AC est vérifiée. Cela revi... Lire l’article
comparaison, mathématiques
La comparaison de 2 nombres réels permet de déterminer lequel est le plus grand et lequel est le plus petit. Pour comparer 2 nombres a et b, on les soustrait et on regarde si le résultat est positif, négatif ou nul : ... Lire l’article
cube
Le cube (du grec kubos, « dé à jouer ») est un volume, ou solide, fondamental de l'espace que les géomètres analysent depuis des milliers d'années. Il est l'un des 5 solides de Platon, philosophe grec qui étudia des s... Lire l’article
cylindre
En mathématiques, un cylindre est un volume fondamental de l'espace. Les grecs appelaient kylindros, devenu en français « cylindre » par l'intermédiaire du latin cylindrus, un rouleau q'ils utilisaient pour manœuvrer ... Lire l’article
démonstration, mathématiques
En mathématique, une démonstration est un discours qui permet d'établir la vérité d'une proposition à partir d'une ou de plusieurs hypothèses. Pour être valide, ce raisonnement doit respecter les lois de la logique. E... Lire l’article
déplacements, mathématiques
En géométrie, un déplacement est une transformation qui garde les propriétés de la forme initiale déplacée. Un déplacement conserve les formes (une droite donne une droite, un carré donne un carré, etc.). Il conserve ... Lire l’article
diagramme
Les diagrammes, ou graphiques, sont des dessins représentant des informations mathématiques par des lignes, des formes et des couleurs. Ils permettent de comparer des quantités ou des chiffres et peuvent être compris ... Lire l’article
distributivité
La distributivité (du latin distribuere, « répartir ») est une propriété de la multiplication par rapport à l'addition qui permet de passer d'un produit de sommes à une somme de produits. Une pièce rectangulaire de 13... Lire l’article
division
La division (du latin dividere, signifiant « partager ») est l'une des 4 opérations de l'arithmétique élémentaire. Elle permet de partager ou de répartir en plusieurs parties égales. Elle associe à 2 nombres entiers n... Lire l’article
droite, équation de
Une droite est un ensemble illimité de points. Pour la représenter géométriquement, il faut définir un repère, connaître les coordonnées d'au moins 2 de ses points ou son équation. Le repère Dans le plan, un repère a ... Lire l’article
droites remarquables dans le triangle
Une droite est dite remarquable dans un triangle lorsqu'elle possède une ou plusieurs propriétés quel que soit le triangle. Il existe 4 types de droites remarquables dans le triangle : la médiane, la médiatrice, la ha... Lire l’article
fonction, mathématiques
Dans le langage courant, la notion de fonction impose une dépendance entre 2 quantités, par exemple dans l'expression « le prix est fonction de la demande ». En mathématiques, ce mot fut d'abord utilisé comme un mot d... Lire l’article
fractale
Une « fractale », ou objet fractal, présente des motifs identiques à diverses échelles. Le tout est similaire à une de ses parties, et cela au niveau du moindre détail. En mathématiques, une fractale désigne une courb... Lire l’article
fraction
Une fraction est une division de 2 nombres entiers relatifs. Son résultat est appelé le quotient : a ∈ (ensemble des nombres entiers relatifs) et b ∈ * (ensemble des entiers relatifs non nuls).Les fractions font parti... Lire l’article
géométrie
La géométrie est une science mathématique qui étudie les formes et les figures. Elle explique comment construire ou dessiner, mesurer et comparer des formes. On utilise notamment la géométrie pour bâtir des maisons et... Lire l’article
homothétie
Une homothétie est la transformation de centre O et de rapport k qui à tout point M associe le point M' tel que : OM' = kOM . La notation est : hO,k(M) = M' ou hO,k : M → M'. M' est l'image de M, et k est le rapport, ... Lire l’article
identités remarquables
Les identités remarquables permettent de pouvoir factoriser et développer des expressions mathématiques de manière plus simple. Les expressions qui se trouvent à gauche du signe égal (=) sont les produits remarquables... Lire l’article
infini, mathématiques
Littéralement, le mot « infini » sert à qualifier quelque chose qui est sans limite. Les premières définitions de l'infini furent d'ailleurs des définitions dites négatives. Pour les Grecs et les Romains, « l'infini, ... Lire l’article
itération, mathématiques
Itérer une opération mathématique, c'est la répéter un certain nombre de fois en prenant le résultat précédent comme point de départ de l'opération suivante. Par exemple, si on itère l'opération « multiplier par 3 » e... Lire l’article
limite, mathématiques
En mathématiques, on utilise le terme « limite » principalement lors des études de fonctions numériques. Trouver la limite en un point particulier d'une fonction, c'est déterminer de quelle valeur elle s'approche lors... Lire l’article
longueur
La longueur d'un objet, qui permet d'évaluer sa grandeur, est la distance entre ses 2 extrémités les plus éloignées. En géométrie, la longueur est souvent opposée à la largeur. Le mot « oblong » sert à caractériser de... Lire l’article
milieux, théorème des
Le théorème des milieux dit que, dans un triangle, la droite qui passe par les milieux de deux côtés est parallèle au troisième côté. Soit ABC un triangle, soit I le milieu du segment [AB]. Si J est le milieu du segme... Lire l’article
modélisation, mathématiques
En mathématiques, la modélisation est la représentation de toutes sortes de situations, d'objets et de structures du monde réel. L'étude mathématique de ces représentations, qui contient une bonne part de simulations ... Lire l’article
multiplication
La multiplication (du latin multiplicatio, qui signifie « augmentation ») est l'une des 4 opérations de l'arithmétique élémentaire. Multiplier un nombre entier par un autre, c'est ajouter cet entier à lui-même plusieu... Lire l’article
Napoléon, théorème de
Le théorème de Napoléon dit que, si l'on forme 3 triangles équilatéraux à partir des cotés d'un triangle quelconque, alors les centres de gravité de ces 3 triangles (points d'intersection des médianes) forment à leur ... Lire l’article
nombre décimal
En mathématiques, un nombre décimal s'écrit à l'aide d'une virgule, suivie d'un nombre fini de chiffres. L'existence du zéro en tant que chiffre a permis la création du système décimal, dans lequel un nombre s'écrit à... Lire l’article
nombre d'or
Le nombre d'or est égal approximativement à 1,618 033 988 7. Mais, bien plus qu'une valeur, ce chiffre correspond avant tout à une proportion, la « proportion d'or ». Cette proportion est réalisée quand 2 longueurs st... Lire l’article
nombre entier
En mathématiques, un nombre entier est un nombre naturel positif (1, 2, 3, etc.) ou un nombre nul (0) permettant de compter des objets distincts. L'étude des entiers, avec notamment les opérations d'addition et de mul... Lire l’article
nombre entier relatif
En mathématiques, un nombre entier relatif se compose d'un entier naturel précédé d'un signe positif (+) ou négatif (-). Les entiers positifs s'identifient aux entiers naturels (1, 2, 3, etc.), tandis que les entiers ... Lire l’article
nombres et notation numérale
Un nombre est un concept de base en mathématique, servant à compter, à mesurer et à comparer des quantités. Un système de notation numérale est un ensemble de symboles représentant des nombres. Le système de notation ... Lire l’article
nombres inverses et opposés
Souvent, les notions d'inverse et d'opposé en mathématiques prêtent à confusion.Deux nombres réels opposés sont 2 nombres qui ont la même partie numérique, mais des signes différents. Leurs distances par rapport à l'o... Lire l’article
nombres parfaits
Un nombre parfait est un nombre entier naturel dont la somme des diviseurs propres (diviseurs différents du nombre lui-même) est égale à ce nombre. Par exemple, 6 est divisible par 1, 2 et 3, et 6 = 1 + 2 + 3.Dès l'An... Lire l’article
nombres premiers
Un nombre premier est un nombre entier supérieur ou égal à 2 et divisible uniquement par 1 et par lui-même pour donner un nombre entier : 2 est le seul nombre premier pair. Il existe une infinité de nombres premiers, ... Lire l’article
opérations, mathématiques
Les 4 opérations mathématiques élémentaires sont l'addition, la soustraction, la multiplication et la division. Les symboles respectifs sont +, –, × et : ; ils sont appelés opérateurs. Les chiffres ou les variables qu... Lire l’article
parallèle
En géométrie euclidienne, le parallélisme est une propriété relative aux droites. Ainsi, 2 droites dans un plan sont dites parallèles si elles n'ont aucun point commun ou si elles sont confondues. Dans le cas contrair... Lire l’article
pavage
Paver un plan, c'est recouvrir entièrement ce plan, sans laisser de trou ni faire de superposition, avec une forme de base appelée pavé de base, qu'on reproduit autant qu'on veut en lui faisant subir des transformatio... Lire l’article
périmètre
En géométrie, le périmètre désigne à la fois la longueur du contour d'une surface, mais aussi la ligne qui ferme cette surface. Ce mot est construit à partir du préfixe péri- (« autour ») et du suffixe -mètre (« mesur... Lire l’article
périmètre et aire
Le périmètre est la mesure de la longueur des contours d'une forme géométrique dans le plan, c'est-à-dire en 2 dimensions, le plus souvent appelées longueur et largeur. L'unité de mesure est le mètre (noté m), avec se... Lire l’article
perpendiculaire
En géométrie plane, 2 droites non parallèles sont toujours sécantes (elles se coupent en un point). Elles sont dites perpendiculaires (du latin perpendiculum, « fil à plomb ») lorsqu'elles se coupent en formant un ang... Lire l’article
PGCD et PPCM
Le PGCD et le PPCM sont, respectivement, le plus grand commun diviseur et le plus petit commun multiple entre 2 nombres entiers naturels.Le PGCDLe PGCD de 2 nombres entiers naturels a et b (a, b ∈ ) correspond donc au... Lire l’article
pi
Le nombre pi (noté π) est le nombre défini par l'aire du disque ou le périmètre du cercle : – pi est le rapport entre la circonférence du cercle (le périmètre p) et son diamètre D (2 fois le rayon r) :– pi est aussi l... Lire l’article
pourcentage
Un pourcentage est un rapport entre 2 nombres qui s'exprime sous la forme d'une fraction dont le dénominateur est 100. Pour mesurer l'importance d'une partie quantifiable ayant une caractéristique particulière par rap... Lire l’article
projection et réflexion, mathématiques
En géométrie, la projection et la réflexion sont 2 transformations qui ne gardent pas les propriétés de la forme initiale déplacée. En cela, elles s'opposent aux déplacements que sont la translation, la rotation, la s... Lire l’article
proportionnalité
En sciences, la proportionnalité est le caractère par lequel 2 grandeurs mesurables restent dans le même rapport. Par exemple, en mathématiques, lorsque le diamètre d'un cercle double, la circonférence double. La prop... Lire l’article
puissance, mathématiques
La puissance n-ième d'un nombre a est : (a est multiplié par lui-même n fois, on a donc n facteurs). an se dit « a puissance n » ou « a exposant n ».L'exposant n est un nombre entier non nul.Un nombre à l'exposant 1 n... Lire l’article
Pythagore, théorème de
Le théorème de Pythagore dit que, dans un triangle rectangle, le carré de l'hypoténuse est égal à la somme des carrés des deux autres côtés. Dans un triangle rectangle, le côté opposé à l'angle droit est appelé l'hypo... Lire l’article
quadrilatère
Le quadrilatère est une figure géométrique possédant 4 côtés. Il fait partie de la famille des polygones, figures ayant plusieurs angles. Un quadrilatère noté ABCD possède 4 sommets, qui sont les points A, B, C et D, ... Lire l’article
racine carrée
La racine carrée d'un nombre strictement positif a est le nombre positif, noté , qui, élevé au carré, donne a : La racine carrée d'un nombre au carré, est égale à ce nombre : La racine carrée d'un nombre négatif n'exi... Lire l’article
règle de trois
La règle de trois est une méthode de calcul qui fait intervenir 3 valeurs pour en obtenir une quatrième. Les 3 nombres a, b et c étant donnés, il s'agit de déterminer un nombre d tel que a et b soient proportionnels à... Lire l’article
ruban de Möbius, mathématiques
Un ruban de Möbius est une surface n'ayant que 1 seule face et 1 seul bord. Pour permettre de visualiser cette caractéristique, on obtient facilement un ruban de Möbius en faisant subir 1 torsion d'un demi-tour à un r... Lire l’article
science et méthode scientifique
La science est un vaste champ de recherche. Son but est de comprendre l'Univers, comment il s'est formé et tout ce qu'il contient. Branches de la science Il existe de nombreux sujets de recherche. Mais, la science peu... Lire l’article
soustraction
La soustraction (du latin substractio, qui signifie l'« action de se retirer ») est une des 4 opérations élémentaires de l'arithmétique. Elle consiste à retrancher un nombre d'un autre. On considère parfois que la sou... Lire l’article
statistique
La statistique est la branche des mathématiques qui consiste à recueillir, à traiter et à interpréter des informations. Les chiffres ainsi obtenus sont appelés les statistiques. Ils permettent d'établir des prévisions... Lire l’article
symétrie
En mathématiques, la symétrie (du latin symmetria, « justesse des proportions ») est une transformation géométrique qui ne provoque aucune modification de forme ni de dimensions. Dès l'Antiquité, les figures possédant... Lire l’article
symétrie centrale
Une symétrie centrale est une transformation géométrique qui à chaque point associe un point image symétrique par rapport à un centre de symétrie. Si M' est le symétrique de M par rapport à I alors M est le symétrique... Lire l’article
Thalès, théorème de
Le théorème de Thalès dit que si (d) et (d') sont deux droites sécantes en un point A, B et M deux points de la droite (d), distincts de A, C et N deux points de la droite (d'), distincts de A, et si les droites (BC) ... Lire l’article
triangle
Le triangle est une figure géométrique élémentaire formée par 3 points et par les 3 segments qui les relient. Elle fait partie de la famille des polygones et a été nommée à une certaine époque « trigone », c'est à dir... Lire l’article
trigonométrie dans le triangle rectangle
La trigonométrie étudie les relations existant entre les longueurs des côtés d'un triangle et les mesures de ses angles. La trigonométrie est utilisée depuis longtemps en astronomie, en géographie, et par les marins. ... Lire l’article
vecteur, mathématiques
Un vecteur est défini par son origine (ou point de départ), son extrémité (ou point d'arrivée), sa longueur, encore appelée norme du vecteur, sa direction, qui est celle de la droite qui le porte, et son sens, de son ... Lire l’article
volume
En mathématiques, le volume désigne à la fois la partie de l'espace qu'occupe un objet et sa mesure. Ce terme provient du latin voluminis (« chose enroulée »), formé à partir du verbe volvere, qu'on retrouve dans le m... Lire l’article
zéro, mathématiques
La notion de zéro, comme la notion d'infini, est difficile à cerner et à définir pour l'homme. Philosophiquement, le zéro est lié au néant, au vide. En théologie, zéro serait le moment juste avant la naissance de notr... Lire l’article